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Pressure Drop of Fully-
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Cross-Section
The pressure drop of fully developed, laminar, incompressible flow in smooth mini- and
microchannels of arbitrary cross-section is investigated. A compact approximate model is
proposed that predicts the pressure drop for a wide variety of shapes. The model is only
a function of geometrical parameters of the cross-section, i.e., area, perimeter, and polar
moment of inertia. The proposed model is compared with analytical and numerical so-
lutions for several shapes. Also, the comparison of the model with experimental data,
collected by several researchers, shows good agreement. �DOI: 10.1115/1.2234786�
Introduction

Advances in microfabrication make it possible to build micro-
hannels with small characteristic lengths, in the order of mi-
rometers. Micro- and minichannels show promising potential for
eing incorporated in a wide variety of unique, compact, and ef-
cient cooling applications such as in microelectronic devices.
hese micro heat exchangers or heat sinks feature extremely high
eat transfer surface area per unit volume ratios, high heat transfer
oefficients, and low thermal resistances �1�. Microchannels can
e produced directly by techniques such as chemical etching on
ilicon wafers. As a result, the cross-section of the channels de-
ends on a variety of factors, such as the crystallographic nature
f the silicon used. According to Morini �2�, when a KOH-
nisotropic etching technique is employed, it is possible to obtain
icrochannels which have a fixed cross-section. The shape of the

ross-section depends on the orientation of the silicon crystal
lanes. For instance, the microchannels etched in 100 or 110 sili-
on will have a trapezoidal cross-section with an apex angle of
4.7 deg imposed by the crystallographic morphology of the sili-
on or a rectangular cross-section, respectively �2�.

Tuckerman and Pease �3� were the first to demonstrate that
lanar integrated circuit chips can be effectively cooled by lami-
ar water flowing through microchannels with hydraulic diam-
ters of 86 to 95 �m. However, due to small channel dimensions,
he pressure drop and the required pumping power dramatically
ncrease. Therefore, simultaneous hydrodynamic and thermal
nalyses must be performed to investigate the effects of both flow
nd heat transfer in micro- or minichannels.

In recent years, a large number of papers have reported pressure
rop data for laminar flow of liquids in microchannels with vari-
us cross-sections. However, published results are often inconsis-
ent. According to �4�, some of these authors conducted experi-

ents in noncircular microchannels, but compared their pressure
rop data with the classical values of f Re=16 or 64 of circular
ipes. Some of the discrepancies in the published data can be
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explained within the limits of continuum fluid mechanics; Bahr-
ami et al. �5� developed a model that captures the observed trends
in rough microchannels. Recently, Liu and Garimella �6� and Wu
and Cheng �7� conducted experiments in smooth rectangular and
trapezoidal microchannels, respectively; they reported that the
Navier-Stokes equations are valid for laminar flow in smooth
microchannels.

In the literature there are no comprehensive and encompassing
models or correlations that predict pressure drop in arbitrary
cross-sections. Thus the objective of this work is to develop a
compact approximate model that provides the pressure drop in
micro- and minichannels of arbitrary cross-section. The model
estimates the pressure drop �within 8% accuracy� and provides
tools for basic design, parametric studies, and optimization analy-
ses required for microchannel heat exchangers and heat sinks.

2 Problem Statement
Consider fully-developed, steady-state laminar flow in a chan-

nel with the boundary �, constant cross-sectional area A, and con-
stant perimeter P, as shown in Fig. 1. The flow is assumed to be
incompressible and have constant properties. Moreover, body
forces such as gravity, centrifugal, Coriolis, and electromagnetic
do not exist. Also, the rarefaction and surface effects are assumed
to be negligible and the fluid is considered to be a continuum. For
such a flow, the Navier-Stokes equations reduce to the momentum
equation which is also known as Poisson’s equation. In this case,
the source term in Poisson’s equation is the constant pressure
gradient along the length of the duct, �p /L. The governing equa-
tion for fully developed laminar flow in a constant cross-sectional
area channel is �8�:

�2w =
1

�

dp

dz
with w = 0 on � �1�

where w and z are the fluid velocity and the flow direction, re-
spectively. The boundary condition for the velocity is the no-slip
condition at the wall.

The velocity profile is constant in the longitudinal direction;
thus the pressure gradient applied at the ends of the channel must
be balanced by the shear stress on the wall of the channel

�PL = �pA �2a�

where
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here AL= P ·L is the lateral surface area of the channel.

Exact Solutions
In this section, relationships are derived for pressure drop and

he product of Reynolds number and Fanning friction factor, fRe,
f fully developed laminar flow for various cross-sections using
xisting analytical solutions. The analytical solutions for the rel-
vant flow fields can be found in fluid mechanics textbooks such
s White �9� and Yovanovich �10�. The following method, de-
cribed for the elliptical microchannels, can be applied for other
hapes listed in Table 1. Therefore, it is left to the reader to apply
he steps for other cross-sections.

The governing equation is the Poisson’s equation, Eq. �1�. An
nalytical solution exists for the laminar fluid flow in elliptical
icrochannels with the following mean velocity

w =
b2c2

4�b2 + c2�
�p

�L
�3�

here b and c are the major and minor semi-axes of the
ross-section, b�c. An aspect ratio is defined for the elliptical
icrochannel

ig. 1 Microchannel of arbitrary constant cross-section,
š �A

able 1 Analytical solutions of fRe for various cross-sections
ournal of Fluids Engineering
0 � � �
c

b
� 1 �4�

For an elliptical microchannel, the cross-sectional area and the
perimeter are

A = �bc

P = 4bE��1 − �2� �5�

where E�x�=�0
�/2�1−x2 sin2 t dt is the complete elliptic integral of

the second kind. The mean velocity can be presented in terms of
the aspect ratio, �,

w =
c2

4�1 + �2�
�p

�L
�6�

which can be rearranged as

�p

L
=

4�1 + �2�
c2 �w �7�

Combining Eqs. �2a�, �2b�, and �7�, the mean wall shear stress is

� =
4��1 + �2�w

c2

A

P
�8�

The ratio of the cross-sectional area over the perimeter for ellip-
tical microchannels is

A

P
=

�c

4E��1 − �2�
�9�

The mean wall shear stress becomes

� =
���1 + �2�w

cE��1 − �2�
�10�

A relationship can be found between the minor axis c and the area,
Eq. �5�,

c =�A�

�
�11�

Substituting Eq. �11� into Eq. �10�, one finds

� =
����1 + �2�
��E��1 − �2�

�w
�A

�12�

It is conventional to use the ratio of area over perimeter Dh
=4A / P, known as the hydraulic diameter, as the characteristic
length scale for noncircular channels. However, as can be seen in
Eq. �12�, a more appropriate length scale is the square root of
area, �A. Muzychka and Yovanovich �11� showed that the appar-
ent friction factor is a weak function of the shape of the geometry
of the channel by defining aspect ratios for various cross-sections.
Later, it will be shown that the selection of the square root of area
as the characteristic length leads to similar trends in f Re�A for
elliptical and rectangular channels with identical cross-sectional
area.

With the square root of area, �A, as the characteristic length
scale, a nondimensional wall shear stress can be defined as:

�* =
��A

�w
=

����1 + �2�
��E��1 − �2�

�13�

It should be noted that the right-hand side of Eq. �13� is only a
function of the channel aspect ratio �geometry�.

The Fanning friction factor is defined as

f =
�

1
2	w2

�14�

Using Eq. �12�, the Fanning friction factor for elliptical micro-

channels becomes

SEPTEMBER 2006, Vol. 128 / 1037
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1

f =
2����1 + �2�
��E��1 − �2�

�

	w�A
�15�

he Reynolds number can be defined based on the square root of
rea �A

Re�A =
	w�A

�
�16�

ombining Eqs. �15� and �16� becomes

f Re�A =
2����1 + �2�
��E��1 − �2�

�17�

imilar to �*, f Re�A is only a function of the channel geometry.
hus, a relationship can be found between the nondimensional
all shear stress �* and f Re�A

f Re�A = 2�* �18�

ollowing the same steps described above, relationships for f Re�A
re determined for other microchannel cross-sections and they are
ummarized in Table 1. With respect to Table 1, the following
hould be noted:

1. The original analytical solution for the mean velocity in
rectangular channels is in the form of a series. However,
when �=1 �square�, the first term of the series gives the
value f Re�A=14.132 compared with the exact value �full
series solution� of 14.23. The maximum difference of
approximately 0.7% occurs at �=1. For smaller values of
�, the agreement with the full series solution is even
better. Therefore, only the first term is employed in this
study.

2. For rectangular microchannels, two asymptotes can be
recognized, i.e., the very narrow rectangular and square
channels �12�

f Re�A =
12
��

� → 0

f Re�A = 14.13 � = 1 �19�

3. For elliptical microchannels, the asymptotes are the very
narrow elliptical and circular microchannels �12�

f Re�A =
11.15
��

� → 0

f Re�A = 14.179 � = 1 �20�

Note that the f Re�A values and trends for elliptical and
rectangular channels are very close at both asymptotes.
Figure 2 shows the comparison between f Re�A relation-
ships for the rectangular and elliptical microchannels re-
ported in Table 1. In spite of the different forms of the
f Re�A for rectangular and elliptical microchannels,
trends of both formulas are very similar as the aspect
ratio varies between 0
��1. The maximum relative
difference is less than 8%.

Elliptical and rectangular cross-sections cover a wide range of
ingly-connected microchannels. With the similarity in the trends
f solutions for these cross-sections, one can conclude that a gen-
ral, purely geometrical, relationship may exist that predicts

f Re�A for arbitrary singly-connected cross-sections. Based on this
bservation, an approximate model is developed in the next sec-
ion.

Approximate Solution
Exact relationships for fRe�A are reported for the elliptical, rect-
ngular, and some other shapes in the previous section. However,

038 / Vol. 128, SEPTEMBER 2006
finding exact solutions for many practical, singly-connected cross-
sections, such as trapezoidal microchannels, is complex and/or
impossible. In many practical instances such as basic design, para-
metric study, and optimization analyses, it is often required to
obtain the trends and a reasonable estimate of the pressure drop.
Moreover, as a result of recent advances in fabrication technolo-
gies in MEMS and microfluidic devices, trapezoidal cross-
sections have become more important. Therefore, an approximate
compact model that estimates pressure drop of arbitrary cross-
sections will be of great value.

Torsion in beams and fully developed laminar flow in ducts are
similar because the governing equation for both problems is Pois-
son’s equation, Eq. �1�. Comparing various singly-connected
cross-sections, the torsional rigidity of a shaft could be accurately
approximated by using an equivalent elliptical cross-section,
where both cross-sectional area and polar moment of inertia are
maintained the same as the original shaft �13�. With a similar
approach as Saint-Venant, a model will be developed for predict-
ing pressure drop in channels of arbitrary cross-section based on
the solution for an elliptical duct.

The elliptical channel is considered, not because it is likely to
occur in practice, but rather to utilize the unique geometrical prop-
erty of its velocity solution. The mean velocity of elliptical chan-
nels is known, Eq. �3�. The polar moment of inertia Ip=�A�x2

+y2�dA, where x and y are distances from x and y axes for an
ellipse is

Ip =
�bc�b2 + c2�

4
�21�

Equation �7� can be rearranged in terms of the polar moment of
inertia, about its center, as follows:

�p

L
=

16�2�w

A3 Ip =
16�2�w

A
Ip

* �22�

where Ip
* = Ip /A2 is a nondimensional geometrical parameter which

we call the specific polar moment of inertia. Combining Eqs. �2a�,
�2b�, and �22�, one can write

� =
16�2�w

�A

�A

P
Ip

* �23�

Note that �A / P is also a nondimensional parameter. Using Eq.

Fig. 2 Comparison of fRe�A for elliptical and rectangular
microchannels
�23�, the Fanning friction factor, Eq. �14�, can be determined

Transactions of the ASME



o

U

T
f
T
p

e

J

�24�
r,

f Re�A = 32�2Ip
*
�A

P
�25�

sing Eq. �18�, one can find the nondimensional shear stress

�* =
1

2
f Re�A = 16�2Ip

*
�A

P
�26�

he right-hand side of Eqs. �25� and �26� are general geometrical
unctions since Ip, A, and P are general geometrical parameters.
herefore the approximate model assumes that for constant fluid
roperties and flow rate in a constant cross-section channel, �* and

f Re�A are only functions of the nondimensional geometric param-
*�

Table 2 Approximate mod
ter, Ip A / P, of the cross-section.

ournal of Fluids Engineering
Employing Eq. �25�, one only needs to compute the nondimen-
sional parameter Ip

*�A / P of the channel to determine the f Re�A
value. On the other hand, using the conventional method, Pois-
son’s equation must be solved to find the velocity field and the
mean velocity; then the procedure described in the previous sec-
tion should be followed to find fRe�A. This clearly shows the
convenience of the approximate model.

To validate the approximate model, the exact values of f Re�A
for some cross-sections are compared with the approximate
model, i.e., Eq. �25�, in Table 2. Also the geometric parameter
Ip
*�A / P is reported for a variety of cross-sections in Table 2. The

approximate model shows relatively good agreement, within 8%
relative difference, with the exact solutions for the cross-sections
considered, except for the equilateral triangular channel. More-
over, the nondimensional geometric parameter is derived for regu-
lar polygons and trapezoidal channels; the approximate model is
compared with the numerical values for these shapes published by

for various cross-sections
el
Shah and London �8�.

SEPTEMBER 2006, Vol. 128 / 1039



m
s

T

T
r
a
p
u
u

T
t
e

1

4.1 Regular Polygons. Figure 3 illustrates a regular polygon
icrochannel of the side length a. For regular polygons, cross-

ectional area, perimeter, and the polar moment of inertia are

A =
na2

4 tan ��/n�

P = na

Ip =
na4

96 tan ��/n�	1 +
3

tan2 ��/n�
 �27�

hus, one can obtain f Re�A

f Re�A =
8�2 tan ��/n�

3n�n tan ��/n�
	1 +

3

tan2 ��/n�
 �28�

able 3 lists the geometric parameter Ip
*, �A / P, and f Re�A for

egular polygons. Table 3 also shows the comparison between the
pproximate model with the numerical results reported for regular
olygons by Shah and London �8�. The following relationship is
sed to convert the Reynolds number Fanning friction factor prod-
ct based on Dh to �A

f Re�A =
P

4�A
f ReDh

�29�

he approximate model shows good agreement, within 8% rela-
ive difference, with the numerical results of �8� except for the
quilateral triangular �n=3�; the agreement improves as the num-

Fig. 3 Cross-section of a regular polygon channel

Table 3 Geometric parameter for regular
polygons
040 / Vol. 128, SEPTEMBER 2006
ber of sides increases toward the circular channel �n→ � �. Using
a mapping approach, a compact model is developed in the Appen-
dix which predicts the f Re�A for isosceles triangular channels
with a maximum difference of less than 3.5%.

4.2 Trapezoidal Microchannel. The cross-section of a trap-
ezoidal microchannel is shown in Fig. 4. This is an important
shape since some microchannels are manufactured with trapezoi-
dal cross-sections as a result of the etching process in silicon
wafers. Furthermore, in the limit when the top side length, a, goes
to zero, it yields an isosceles triangle. At the other limit when a
=b, it yields a rectangular channel, and a square microchannel
when a=b=h. An aspect ratio is defined

� �
a + b

2h
�30�

The aspect ratio should work for all above-mentioned limiting
cases. As shown in Table 4, the defined aspect ratio covers the
triangular, rectangular, and square limiting cases. The cross-
sectional area, perimeter, and polar moment of inertia �about its
center� are

A = �h2

P = 2h�� + ��2 − ��2 + 1�

Ip =
A2�2�3�2 + 1� + ��1 − 3�2��

36�
�31�

where �, another nondimensional parameter, is defined as

� �
h2ab

A2 =
4ab

�a + b�2 �32�

Note that the parameter � is zero for triangular and 1 for rectan-
gular and square channels. The angle 
 �see Fig. 4� can be found
from � and �

Fig. 4 Cross-section of an isosceles trapezoidal channel

Table 4 Limiting cases of isosceles trapezoid
Transactions of the ASME
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sin 
 =
1

��2 − ��2 + 1
�33�

ne can obtain f Re�A

f Re�A =
8�2�3�2 + 1� + ��1 − 3�2�

9���� + ��2 − ��2 + 1�
�34�

hah and London �8� reported numerical values for f ReDh for
aminar fully-developed flow in trapezoidal channels. They pre-
ented f ReDh values as a function of �*=h /a for different values
f angles 
. The nondimensional geometrical parameters � and �,
efined in this work, are related to �* and 
 in �8� as follows:

� =
1

�* +
1

tan 


Table 5 Model versus data †8‡, trapezoidal channels
ournal of Fluids Engineering
� = 1 −
1

�2tan2 

�35�

Table 5 shows the comparison between the approximate model
and the numerical data reported by �8�. As can be seen, except for
a few points, the agreement between the approximate model and
the numerical values is reasonable �less than 10%�.

5 Comparison With Experimental Data
The present model is compared with experimental data col-

lected by several researchers �6,7,14� for microchannels. The ac-
curacy of the experimental data is in the order of 10%.

Wu and Cheng �7� conducted experiments and measured the
friction factor of laminar flow of deionized water in smooth sili-
con microchannels of trapezoidal cross-sections. Table 6 summa-
rizes geometric parameters of their microchannels.

Figures 5 and 6 are examples of the comparison between the
approximate model and the data of �7� for channels N1-100 and
N2-200, respectively. As shown the approximate model shows
good agreement with these data.

The frictional resistance f Re�A is not a function of Re number,
i.e., it remains constant for the laminar regime as the Reynolds
number varies. Therefore, the experimental data for each set are
averaged over the laminar region. As a result, for each experimen-
tal data set, one �, one �, and one f Re�A value can be obtained.

Fig. 5 Comparison of experimental data †7‡ with model
Fig. 6 Comparison of experimental data †7‡ with model

SEPTEMBER 2006, Vol. 128 / 1041
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able 6 presents the predicted f Re�A values by the approximate
odel and the averaged values of the reported experimental val-

es of f Re�A �7�. As shown, the agreement between the predicted
alues and the experimental values are good and within the ex-
eriment uncertainty. The channels considered by �7� cover a wide
ange of geometrical parameters, i.e., 0.71���97.70 and 0��

1; as a result the data include triangular and rectangular micro-
hannels. It should be noted that, in spite of the different dimen-
ions, channels N2-50, N3-50, N3-100, N3-150, N3-200, and N4-
00 have the same values of � and �; thus they are geometrically
quivalent. It is interesting to observe that the predicted and mea-
ured f Re�A values are identical for these channels, as expected.
igure 7 illustrates the comparison between all trapezoidal data
7� and the proposed model. The ±10% bounds are also shown in
he plot, to better demonstrate the agreement between the data and
he model.

Table 6 Trapezoidal
ig. 7 Comparison between model and all trapezoidal data †7‡

042 / Vol. 128, SEPTEMBER 2006
Liu and Garimella �6� carried out experiments and measured
the friction factor in rectangular microchannels. They did not ob-
serve any scale-related phenomena in their experiments and con-
cluded that the conventional theory can be used to predict the flow
behavior in microchannels in the range of dimensions considered.
They �6� measured and reported the relative surface roughness of
the channels to be negligible, thus their channels can be consid-
ered smooth �see Fig. 8 for channels dimensions�. Figure 8 also
shows the comparison between the model and the channel L3 of
data �6�.

Gao et al. �14� experimentally investigated laminar fully devel-
oped flow in rectangular microchannels. They designed their ex-
periments to be able to change the height of the channels tested
while the width remained constant at 25 mm. They conducted
several experiments with several channel heights; see Fig. 9 for
the channels dimensions used in this study. Gao et al. �14� mea-
sured the roughness of the channel and reported negligible relative

crochannels data †7‡
mi
Fig. 8 Comparison of experimental data †6‡ with model

Transactions of the ASME
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oughness, thus their channels can be considered smooth. Figure 9
hows the comparison of the model and data �14�.

Following the same method described for trapezoidal data, the
eported values of f Re�A for rectangular microchannels are aver-
ged and plotted against both approximate and exact models in
ig. 10. As previously discussed, the maximum difference be-

ween the exact and approximate solutions for the rectangular
hannel is less than 8%. As shown in Fig. 10, the collected data
over a wide range of the aspect ratio �=c /b, almost three de-
ades; also the relative difference between the data and model is
ithin the accuracy of the experiments.

Summary and Conclusions
The pressure drop of fully-developed laminar flow in smooth

rbitrary cross-sections channels is studied. Using existing ana-
ytical solutions for fluid flow, relationships are derived for f Re�A
or selected cross-sections. It is observed through analysis that the
quare root of area �A, as the characteristic length scale, is supe-
ior to the conventional hydraulic diameter, Dh. Thus it is recom-
ended to use �A instead of Dh.
A compact approximate model is proposed that predicts the

ressure drop of fully developed, laminar flow in channels of
rbitrary cross-section. The model is only a function of geometri-
al parameters of the cross-section, i.e., area, perimeter, and polar

Fig. 9 Comparison of experimental data †15‡ with model

ig. 10 Comparison between model and all rectangular data

6,7,15‡

ournal of Fluids Engineering
moment of inertia. The proposed model is compared with analyti-
cal and numerical solutions for several shapes. Except for the
equilateral triangular channel �with 14% difference�, the present
model successfully predicts the pressure drop for a wide variety of
shapes with a maximum difference on the order of 8%. Moreover,
a compact model is developed using a mapping approach, which
predicts the fRe�A for isosceles triangular channels with a maxi-
mum difference of less than 3.5%.

The proposed model is also validated with either experimental
data or exact analytical solutions for rectangular, trapezoidal, tri-
angular �isosceles�, square, and circular cross-sections collected
by several researchers and shows good agreement.
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Nomenclature
A � cross-sectional area, m2

b ,c � channel semi-axes, m
Dh � hydraulic diameter 4A / P, m

E�·� � complete elliptic integral of the second kind
f � Fanning friction factor, 2� /	w̄2

h � height of trapezoidal channel, m
Ip � polar moment of inertia, m4

Ip
* � specific polar moment of inertia, Ip /A2

L � microtube length, m
n � number of sides, regular polygons
P � perimeter, m

Re�A � Reynolds number, 	w̄�A /�
w � fluid velocity, m/s
w̄ � mean fluid velocity, m/s
z � flow direction

Greek Symbols
�* � aspect ratio trapezoidal duct, h /a
� � dimensionless parameter trapezoidal duct
� � aspect ratio, c /b
	 � fluid density, kg/m3

� � fluid viscosity, kg/m.s
� � wall shear stress, N/m2

�* � nondimensional wall shear stress

 � trapezoidal channel angle, rad

�p � pressure drop, Pa
� � boundary of duct

Subscripts
�A � square root of cross-sectional area, m

Appendix: Isosceles Triangular Channels
To calculate the pressure drop in isosceles triangular channels, a

mapping approach is used. Shah and London �8� reported numeri-
Fig. 11 Two limits of isosceles triangular channel

SEPTEMBER 2006, Vol. 128 / 1043



c
o

T
t
c
s
y
T
t

T
t
e
F
�
a

1

al values of f ReDh for isosceles triangular channels as a function
f the aspect ratio defined as �*

�* =
h

b
�A1�

he reported numerical values �8� were converted to f Re�A. Plot-
ing fRe�A versus �* reveals that the solution has two asymptotes
orresponding to the angle 
 as it approaches 0 and 180 deg as
hown in Fig. 11. It is interesting to observe that these two as-
mptotes are both similar to very narrow rectangular channels.
hus Eq. �19� can be used to predict f Re�A in both limits. Equa-

ion �19� can be written in terms of �*, defined by �8�, as follows:

f Re�A = �
12

�2�*
�* → 0

12��*

�2
�* → �

�A2�

o find relationships between �* of the triangular channel and � of
he equivalent rectangular channel, the cross-sectional area of the
quivalent rectangular is set equal to the triangular channel �see
ig. 11�. Using the blending technique of Churchill and Usagi
15�, a compact correlation can be developed by combining the
bove asymptotes as follows:

Fig. 12 f Re�A for isosceles triangular channels
044 / Vol. 128, SEPTEMBER 2006
f Re�A = 6�	 2

�*
n/2

+ �2�*�n/2
1/n

�A3�

The value of the fitting parameter n can be obtained by comparing
the compact correlation with the numerical values for �* in the
range �0.5, 2�. If we choose �*=1, then f Re�A=15.24, and the
value of n=1.184 gives excellent agreement at this point. If we
select n=1.20, the maximum difference of about 3.5% occurs at
�*=0.3. For the equilateral triangle where �*= �3/2, the compact
model with n=1.20, gives f Re�A=15.24, which is about 0.3%
greater than the numerical value of 15.19. Figure 12 presents the
numerical values of f Re�A reported by �8�, the two asymptotes,
and the compact model, Eq. �A3�, with n=1.20.
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